Pyruvate Kinase M2 Expression, but Not Pyruvate Kinase Activity, Is Up-Regulated in a Grade-Specific Manner in Human Glioma
نویسندگان
چکیده
Normal tissues express the M1 isoform of pyruvate kinase (PK) that helps generate and funnel pyruvate into the mitochondria for ATP production. Tumors, in contrast, express the less active PKM2 isoform, which limits pyruvate production and spares glycolytic intermediates for the generation of macromolecules needed for proliferation. Although high PKM2 expression and low PK activity are considered defining features of tumors, very little is known about how PKM expression and PK activity change along the continuum from low grade to high grade tumors, and how these changes relate to tumor growth. To address this issue, we measured PKM isoform expression and PK activity in normal brain, neural progenitor cells, and in a series of over 100 astrocytomas ranging from benign grade I pilocytic astrocytomas to highly aggressive grade IV glioblastoma multiforme (GBM). All glioma exhibited comparably reduced levels of PKM1 expression and PK activity relative to normal brain. In contrast, while grade I-III gliomas all had modestly increased levels of PKM2 RNA and protein expression relative to normal brain, GBM, regardless of whether they arose de novo or progressed from lower grade tumors, showed a 3-5 fold further increase in PKM2 RNA and protein expression. Low levels of PKM1 expression and PK activity were important for cell growth as PKM1 over-expression and the accompanying increases in PK activity slowed the growth of GBM cells. The increased expression of PKM2, however, was also important, because shRNA-mediated PKM2 knockdown decreased total PKM2 and the already low levels of PK activity, but paradoxically also limited cell growth in vitro and in vivo. These results show that pyruvate kinase M expression, but not pyruvate kinase activity, is regulated in a grade-specific manner in glioma, but that changes in both PK activity and PKM2 expression contribute to growth of GBM.
منابع مشابه
Probing Conformational Feature of a Recombinant Pyruvate Kinase by Limited Proteolysis
Pyruvate kinase is a key enzyme in glycolytic pathway that catalyzes the transphosphorylation between phosphoenolpyruvate and ADP to yield ATP and Pyruvate. Geobacillus stearothermophillus has a stable pyruvate kinase with determined crystal structure that composed of four separate domains. Given that limited proteolysis experiments can be successfully used to probe conformational features of p...
متن کاملتأثیر استرس اکسیداتیو حاصل از مصرف سیگار بر فعالیت آنزیمهای گلیکولیزی هگزوکیناز و پیروات کیناز در اریتروسیتهای افراد سیگاری
Background & Aim: Hexokinase and pyruvate kinase are two regulatory enzymes of glycolytic pathway in erythrocytes. Increasing evidence suggests that cigarette smoking which produces free radicals and oxidative stress can cause damage to body macromolecules such as proteins and enzymes. The aim of the present study was to investigate the susceptibility of key enzymes of erythrocytes glycolyt...
متن کاملPrevalence of Pyruvate Kinase Deficiency among the Newborns (Shiraz-Iran)
Background: The frequency of pyruvate kinase (PK) deficiency, an autosomal recessive defect, is approximately 3 per 10,000 individuals in Shiraz and surrounding areas, and is increased due to high consanguinity marriage frequency. The purpose of this study is to obtain data on the frequency and spectrum of gene mutation of PK in newborns, from Shiraz and surrounding areas. Materials and Methods...
متن کاملErythrocyte pyruvate kinase deficiency among anemic individuals in Bandar Abbas, Iran
Introduction: In addition to G6PD deficiency, human erythrocyte pyruvate kinase (PK-R) deficiency is one of the most common causes of non-spherocytic hemolytic anemia. Clinical severity of this disorder is not the same in homozygote form of this disease and ranges from mild to chronic and anemia; so it has a wide variation. Severely effected individuals require blood transfusions or splenectomy...
متن کاملFocal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کامل